Effect of galectin-1 administration on pregnancy rate and its economic viability in TAI procedures in beef cattle
DOI:
https://doi.org/10.22167/2675-441X-20210573Keywords:
proteins, fertility, reproductive biotechniques, economic profitabilityAbstract
The purpose of this work is to demonstrate the reproductive efficacy and the economic impact of a complementary tool to the TAI (timed artificial insemination) protocols - the administration of a single dose of recombinant human galectin-1 (rHGAL1) during the insemination procedure. GAL-1 can be considered as a modulator of the pregnancy development process. Reproductive efficacy was verified through the pregnancy rate in the first service, by ultrasonography (at 28-35 days) in contemporary groups (YG) of cows subdivided into 02 experimental groups (Control Group, composed of cows inseminated in a conventional and Treated group, composed of cows inseminated with rHGAL-1 administration following the deposition of the semen dose). Ninety YG were formed, grouping cows under identical conditions (inseminator, farm/lot, breed, animal category, semen/bull variables). The experiment was conducted in 15 farms, with 3,125 cows (Nellore and crossbred), all multiparous and with calf at foot (from 60 to 100 days old) and who maintained a body score (BSC) between 3.5 and 2.5 in the act of the TAI protocol and in the pregnancy diagnosis. It was demonstrated, by the proposed statistical method, that the “rHGAl-1 dose” effect was significant, increasing the probability of obtaining pregnancy by 8.38 percentage points (p < 0.0001). Based on the construction of a hypothetical model, the economic profitability that can be obtained were compared. Using the average increase obtained by 8.38 percentage points more in the pregnancy rate, it was possible to increase productivity, adding, almost U$ 2 thousand to profitability for each 100 cows worked.
References
Abdalla, H.; Elghafghuf, A.; Elsohaby, I.; Nasr, M.A.F. 2017. Maternal and non-maternal factors associated with late embryonic and early fetal losses in dairy cows. Theriogenology, 15(100): 16-23.
Alfieri, A.A.; Alfieri, A.F. 2017. Doenças infecciosas que impactam a reprodução de bovino. Rev Bras Reprod Anim, 41(1): 133-139.
Amaral, T.B.; Costa, F.P.; Corrêa, E.S. 2003. Touros melhoradores ou inseminação artificial: um exercício de avaliação econômica. Embrapa/CNPGC, Campo Grande, MS. n°140.
Barondes, S.H.; Castronovo, V.; Cooper, D.N.W.; Cummings, R.D.; Drickamer, K.; Felzi, T.; Gitt, M.A.; Hirabayashi, J.; Hughes, C.; Kasai, K.; Leffler, H.; Liu, F.; Lotan, R.; Mercurio, A.M.; Monsigny, M.; Pillai, S.; Polrer, F.; Taz, A.; Rigby, P.W.J.; Rini, J.; Wang, J.L. 1994a. Galectins: a family of animal beta-galactoside-binding lectins. Cell, 76(4): 597-598.
Barondes, S.H.; Cooper, D.N.W.; Gitt, M.A.; Leffler, H. 1994b. Galectins. Structure and function of a large family of animal lectins. Journal of Biological Chemistry, 269(33): 20807-20810.
Barrientos, G.; Freitag, N.; Tirado-González, I.; Unverdorben, L.; Jeschke, U.; Thijssen, V.L.J.L.; Blois, S.M. 2014. Involvement of galectin-1 in reproduction: Past, present and future. Human Reproduction Update, 20: 175-193.
Bidarimath. M.; Tayade, C. 2017. Pregnancy and spontaneous fetal loss: A pig perspective. Molecular Reproduction and Development, 84: 856-869.
Blois, S.M.; Dveksler, G.; Vasta, G.R.; Freitag, N.; Blanchard, V.; Barrientos, G. 2019. Pregnancy galectinology: Insights into a complex network of glycan binding proteins. Frontiers in Immunology,10: 1-15.
Blois, S.M.; Ilarregui, J.M.; Tometten, M.; Garcia, M.; Orsal, A.S.; Cordo-Russo, R.; Toscano, M.A.; Bianco, G.A.; Kobelt, P.; Handjiski, B.; Tirado, I.; Markert, U.R.; Klapp, B.F.; Poirier, F.; Szekeres-Bartho, J.; Rabinovich, G.A.; Arck, P.C. 2007. A pivotal role for galectin-1 in fetomaternal tolerance. Nature Medicine, 13(12): 1450-1457. doi: 10.1038/nm1680.
Bó, G.A.; Cutaia, L.; Chesta, P.; Balla, E.; Picinato, D.; Peres, L.; Maranã, D.; Avillés, M.; Menchaca, A.; Veneranda, G.; Baruselli, P.S. 2005. Implementacion de programas de inseminación artificial en rodeos de cria de argentina. Proc VI Simposio Internacional de Reproducción Animal. Córdoba, Argentina, p. 97–128.
Cheng, Z.; Abudureyimu, A.; Oguejiofor, C.F.; Ellis, R.; Barry, A.T.; Chen, X.; Anstaett, O.L.; Brownlie, J.; Wathes, D.C. 2016. BVDV alters uterine prostaglandin production during pregnancy recognition in cows. Reproduction, 151: 605-614.
Choe, Y.S.; Shim, C.; Choi, D.; Lee, C.S.; Lee, K.K.; Kim, K. 1997. Expression of galectin-1mRNAin the mouse uterus is under the control of ovarian steroids during blastocyst implantation. Molecular Reproduction and Development, 48: 261-266. doi: 10.1002/(SICI)1098-2795(199710)48:2<261:AID-MRD14>3.0.CO;2-0.
Costa, F.P.; Dias, F.R.T.; Gomes, R.C.; Pereira, M.A. 2018. Indicadores de desempenho na pecuária de corte: uma revisão no contexto da Plataforma + Precoce / Embrapa Gado de Corte. - (Documentos / Embrapa Gado de Corte, ISSN 1983-974X ; 237).
Cross, J.C.; Hemberger, M.; Lu, Y.; Nozaki, T.; Whiteley, K.; Masutani, M.; Adamson, S.L. 2002. Trophoblast functions, angiogenesis, and remodeling of the maternal vasculature in the placenta. Molecular and cellular endocrinology, 187(1-2): 207-212.
Cummings, R.D.; Liu, F.T. 2009. Galectins. In: Varki, A.C.; Cummings, R.D.; Esko, J.D.; Freeze, H.H.; Stanley, P.; Bertozzi, C.R.; Hart, G.W.; Etzler, M.E. (Eds.). Essentials of Glycobiology. 2ed. Cold Spring Harbor Laboratory Press, New York, NY, USA. PMID: 20301239.
Dias-Baruffi, M.; Zhu, H.; Cho, M.; Karmakar, S.; McEver, R.P.; Cummings, R.D. 2003. Dimeric galectin-1 induces surface exposure of phosphatidylserine and phagocytic recognition of leukocytes without inducing apoptosis. Journal of Biological Chemistry, 278(42): 41282-41293.
Diskin, M.G.; Waters, S.; Parr, M.; Kenny, D. 2016. Pregnancy losses in cattle: potential for improvement. Reproduction, Fertility and Development, 28(1-2): 83-93.
Diskin, M.G.; Morris, D.G. 2008. Embryonic and early fetal losses in cattle and other ruminants. Reproduction in Domestic Animals, 43: 260-267 (Suppl. 2).
Farin, P.W.; Piedrahita, J.A.; Farin, C.E. 2006. Errors in development of fetuses and placentas from in vitroproduced bovine embryos. Theriogenology, 65: 178-191.
Farmer, J.L.; Burghardt, R.C.; Jousan, F.D.; Hansen, P.J.; Bazer, F.W.; Spencer, T.E. 2008. Galectin 15 (LGALS15) functions in trophectoderm migration and attachment. FASEB Journal, 22: 548-560.
Freitag, N.; Tirado-Gonzaĺez, I.; Barrientos, G.; Herse, F.; Thijssen, V.L.J.L.; Weedon-Fekjær, S.M.; Schulz, H.; Wallukat, G.; Klapp, B.F.; Nevers, T.; Sharma, S.; Staff, A.C.; Dechend, R.; Blois, S.M. 2013. Interfering with Gal-1-mediated angiogenesis contributes to the pathogenesis of preeclampsia. Proceedings of the National Academy of Sciences of the United States of America, 110(28): 11451-11456.
Hyde, K.J.; Schust, D.J. 2016. Immunologic challenges of human reproduction: an evolving story. Fertility and Sterility, 106: 499-510.
Lamb, G.C.; Dahlen, C.R.; Larson, J.E.; Marquezini, G.; Stevenson, J.S. 2010. Control of the estrous cycle to improve fertility for fixed-time artificial insemination in beef cattle: a review. Journal of Animal Science, 88: E181–E192.
Liu, F.T.; Patterson, R.J.; Wang, J.L. 2002. Intracellular functions of galectins. Biochimica et Biophysica Acta, 1572(2-3): 263-273.
Machado, R.; Corrêa, R.F.; Barbosa, R.T.; Bergamaschi, M.A.C.M. 2008. Escore da condição corporal e sua aplicação no manejo reprodutivo de ruminantes. Circular Técnica, 57. Embrapa, São Carlos, SP, Brasil.
Marques, M.O.; Morotti, F.; Lorenzetti, E.; Bizarro-Silva, C.; Seneda, M.M. 2018. Intensified use of TAI and sexed semen on commercial farms. Animal Reproduction, 15: 197-203. doi: 10.21451/1984-3143-AR2018-0070.
McKinniss, E.N.; Esterman, R.D.; Woodall, S.A.; Austin, B.R.; Hersom, M.J.; Yelich, J.V. 2011. Evaluation of two progestogen-based estrous synchronization protocols in yearling heifers of Bos indicus × Bos taurus breeding. Theriogenology, 75: 1699-1707.
Modenutti, C.P., Capurro, J.I.B., di Lella, S., Martí, M.A. 2019. The Structural Biology of Galectin-Ligand Recognition: Current Advances in Modeling Tools, Protein Engineering, and Inhibitor Design. Frontiers in Chemistry, 7: 823.
Nickel, W. 2005. Unconventional secretory routes: direct protein export across the plasma membrane of mammalian cells. Traffic, 6: 607-614. doi: 10.1111/j.1600-0854.2005.00302.x.
Paula, L.A.; Brumatti, R.C.; Faria, F.J.C.; Gaspar, A.O. 2018. Estudo da eficiência técnico-econômica da biotecnologia IATF. Custos e @gronegócio online, 14: 405-432 (Edição Especial).
Perillo, N.L.; Pace, K.E.; Seilhamer, J.J.; Baum, L.G. 1995. Apoptosis of T cells mediated by galectin-1. Nature, 378(6558): 736-739.
Pires, V.A.; Araujo, C.R.; Mendes, Q.C. 2004. Fatores que in-terferem na eficiência reprodutiva de bovinos de corte. In: Simpósio Pecuária Intensiva Nos Trópicos. Anais... Piracicaba: Fundação de Estudos Agrários Luiz de Queiroz: 355-398.
Pohler, K.G.; Pereira, M.H.C.; Lopes, F.R.; Lawrence, J.C.; Keisler, D.H.; Smith, M.F.; Vasconcelos, J.L.M.; Green, J.A. 2016. Circulating concentrations of bovine pregnancy-associated glycoproteins and late embryonic mortality in lactating dairy herds. J Dairy Sci., 99(2):1584-1594. http://dx.doi.org/10.3168/jds.2015-10192.
Pohler, K.G.; Reese, S.T.; Franco, G.A.; Oliveira Filho, R.V.; Paiva, R.; Fernandez, L.; Melo, G.; Vasconcelos, J.L.M.; Cooke, R., Poole, R.K. 2020. New approaches to diagnose and target reproductive failure in cattle. Anim. Reprod., 17(3). https://doi.org/10.1590/1984-3143-ar2020-0057.
Reese, S.T.; Franco, G.A.; Poole, R.K.; Hood, R.; Fernadez Montero, L.; Oliveira Filho, R.V.; Cooke, R.F.; Pohler, K.G. 2020. Pregnancy loss in beef cattle: A meta-analysis. Animal Reproduction Science, 212: 1-11. https://doi. org/10.1016/j.anireprosci.2019.106251.
Ramhorst, R.E.; Giribaldi, L.; Fraccaroli, L.; Toscano, M.A.; Stupirski, J.C.; Romero, M.D.; Durand, E.S.; Rubinstein, N.; Blaschitz, A.; Sedlmayr, P.; Genti-Raimondi, S.; Fainboim, L.; Rabionovichm, G.A. 2012. Galectin-1 confers immune privilege to human trophoblast: implications in recurrent fetal loss. Glycobiolog, 22: 1374-1386.
Rubinstein N.; Ilarregui, J.M.; Toscano, M.A.; Rabinovich, G.A. 2004. The role of galectins in the initiation, amplification and resolution of the inflammatory response. Tissue Antigens, 64(1): 1-12.
Sá Filho, M.F.; Penteado, L.; Reis, E.L.; Reis T.A.; Galvão, K.N.; Baruselli, P.S. 2013. Timed artificial insemination early in the breeding season improves the reproductive performance of suckled beef cows. Theriogenology. 79: 625-632.
Santos, G.; Tortorella R.D.; Fausto, D.A. 2018; Rentabilidade da monta natural e inseminação artificial em tempo fixo na pecuária de corte. Revista IPecege, 4(1): 28-32. doi: https://doi.org/10.22167/r.ipecege.2018.1.28.
Schäfer, T.; Zentgraf, H.; Zehe, C.; Brügger, B.; Bernhagen, J.; Nickel, W. 2004. Unconventional secretion of fibroblast growth factor 2 is mediated by direct translocation across the plasma membrane of mammalian cells. Journal of Biological Chemistry, 279: 6244-6251. doi: 10.1074/jbc.M310500200.
Scot Consultoria. 2021. Cotações - Reposição. Available in: <https://www.scotconsultoria.com.br/cotacoes/
reposicao/?ref=smnb>. Accessed in: 16 dec. 2021.
Silva, A.S.; Silva, E.V.C.; Nogueira, E.; Zúccari, C.E.S.N. 2007. Avaliação do custo/benefício da inseminação artificial convencional e em tempo fixo de fêmeas bovinas pluríparas de corte. Revista Brasileira de Reprodução Animal, 31: 443:455.
Stowell, S.R.; Karmakar, S.; Stowell, C.J.; Dias-Baruffi, M.; McEver, R.P.; Cummings, R.D. 2007. Human galectin-1,−2, and−4 induce surface exposure of phosphatidylserine in activated human neutrophils but not in activated Tcells. Blood., 109: 219-227.
Than, N.G.; Romero, R.; Erez, O.; Weckle, A.; Tarca, A.L.; Hotra, J.; Abbas, A.; Han, Y.M.; Kim, S.S.; Kusanovic, J.P.; Gotsch, F.; Hou, Z.; Santolaya-Forgas, J.; Benirschke, K.; Papp, Z.; Grossman, L.I.; Goodman, M.; Wildman, D.E. 2008. Emergence of hormonal and redox regulation of galectin-1 in placental mammals: implication in maternal–fetal immune tolerance. Proceedings of the National Academy of Sciences, 105: 15819-15824.
Tortorella, R.D.; Ferreira, R.; Santos, J.T.; Andrade Neto, O.S.; Barreta, M.H.; Oliveira, J.F.; Gonçalves, P.B.; Neves J.P. 2013. The effect of equine chorionic gonadotropin on follicular size, luteal volume, circulating progesterone concentrations, and pregnancy rates in anestrous beef cows treated with a novel fixed-time artificial insemination protocol. Theriogenology 79(8): 1204-1209.
Wiltbank, M.C.; Baez, G.; Garcia-Guerra, A.; Toledo, M.Z.; Monteiro, P.L.J.; Melo, L.F.; Ochoa, J.C.; Santos, J.E.P.; Sartori, R. Pivotal periods for pregnancy loss during the first trimester of gestation in lactating dairy cows.
Theriogenology, 2016; 86(1): 239-253. http://dx.doi.org/10.1016/j.theriogenology.2016.04.037.
Yavas, Y.; Walton, J.S. 2000. Postpartum acyclicity in suckled beef cows: A review. Theriogenology, 54:25-55.
Zuchi Neto, N.; Dalchiavon, F.C. 2017. Viabilidade financeira da inseminação artificial em tempo fixo de bezerros cruzados Nelore e Aberdeen Angus. Revista IPecege 3(3): 23-27.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Quaestum
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.