Agro photovoltaic: feasibility of synergistic system in the sugarcane bioenergy sector
DOI:
https://doi.org/10.22167/2675-441X-20220578Keywords:
renewable energy; cogeneration; solar energy; optimization of land useAbstract
A feasibility analysis of the agro photovoltaic approach applied in the sugarcane energy sector is presented. A tailored architecture of photovoltaic implementation was designed to be installed above and on the same area of sugarcane plot without reduction of the planted area, respecting the agronomic requirements of the crop. Were analyzed mutual influences, necessary adjustments in crop handling, life cycle management, cross effects on agro-industrial costs and yields, potential savings, gains by additional electricity generation and improved economic results from synergies. The combined cross effects were applied in a hypothetical sugar-energy plant in the central region of the state of São Paulo, using typical figures and parameters of the 2019/2020 harvest season, based on updated sectorial reports, and using similarly typical parameters of photovoltaic plants. The greatest operational gain was due to the optimization and cost sharing with the exiting electricity generation on the thermal plant drive by biomass, and the highest relative incremental cost resulted from the photovoltaic installation, adapted conveniently to the special management and handling practices required by sugarcane crop. The approach proved economically feasible, respecting the agronomic conditions of the crop and the optimized use of the electric cogeneration infrastructure drive by biomass. The approach resulted on a significant increase in the revenues of energy cogeneration and the joint economic margin. The main feasibility constraints and check items are those related to the minimum negotiated average price of electricity, and to the CAPEX of the adapted photovoltaic architecture installation, strongly linked to the currency exchange ratio.
References
Weselek A.; Ehmann A.; Zikeli S. Agrophotovoltaic systems: applications, challenges, and opportunities. A review. Agron Sustain Dev. 2019; Springer-Verlag France.
Goetzberger A.; Zastrow A. Kartoffeln unter dem Kollektor. Sonnenenergie.1981.
Dupraz C.; Marrou H.; Talbot G. 2011. Combining solar photovoltaic panels and food crops for optimising land use: Towards new agrivoltaic schemes. Renew Energ. 2011; 36(10): 2725–2732.
Marrou H.; Dufour L.; Wery J. How does a shelter of solar panels influence water flows in a soil-crop system? Eur J Agron. 2013; 50: 38–51.
Marrou H.; Wery J.; Dufour L.; Dupraz C. Productivity and radiation use efficiency of lettuces grown in the partial shade of photovoltaic panels. Eur J Agron. 2013; 44: 54–66.
Adeh E.H.; Good S.P.; Calaf M.; Higgins C.W. Solar PV Power Potential is Greatest Over Croplands. Sci Rep. 2019; 9(1):1–6.
Harinarayana T.; Vasavi K.S.V. Solar Energy Generation Using Agriculture Cultivated Lands. SGRE. 2014; 5(2): 31–42.
Essam R. Evaluation of agrophotovoltaic technical and economical potential in Egypt including optimization of system technology and harvest. (Dissertation) Giza, Egypt, University of Kassel & Cairo University. 2014.
Schindele S.; Trommsdorff M.; Schlaak A. Implementation of agrophotovoltaics: Techno-economic analysis of the priceperformance ratio and its policy implications Stephan. Appl Energy. 2020; 265: 114737.
Dias L.; Gouveia J.P.; Lourenço P.; Seixas J. Interplay between the potential of photovoltaic systems and agricultural land use. Land use policy. 2019; 81: 725–735.
Trommsdorff M. An Economic Analysis of Agrophotovoltaics: Opportunities, Risks and Strategies towards a More Efficient Land Use. Constitutional Economics Network. 2016; 03: 35. Available in <https://www.econstor.eu/bitstream/10419/150976/1/879248831.pdf>.
Bigaton A.; Danelon A.F.; Bressan G.; Silva H.J.T.; Rosa J.H.M. Previsão de custos do setor sucroenergético na região Centro-Sul do Brasil: safra 2017/18. Revista IPecege. 2017; 3(3): 65.
Bigaton A.; Meneghel de Moraes J.M.; Silva H.J.T.; Rosa J.H.M. Evolução de indicadores industriais e custos de produção do setor sucroenergético. Revista IPecege. 2018; 4(2): 77–81.
Dinesh H.; Pearce J.M. The potential of agrivoltaic systems. Renew Sust Energ. 2016; 54: 299–308.
Amaducci S.; Yin X.; Colauzzi M. Agri voltaic systems to optimize land use for electric energy production. Appl Energy. 2018; 220: 545–561.
Barron-Gafford G.A.; Pavao-Zuckerman M.A.; Minor R.L. Agrivoltaics provide mutual benefits across the food–energy–water nexus in drylands. Nat Sustain. 2019; 2(9): 848–855.
Marrou H.; Guilioni L.; Dufour L.; Dupraz C.; Wery J. Microclimate under agrivoltaic systems: Is crop growth rate affected in the partial shade of solar panels? Agric For Meteorol. 2013; 177: 117–132.
Poorter H.; Niinemets U.; Ntagkas N; Siebenkäs A.; Mäenpää M.; Matsubara S.; Pons T. A meta-analysis of plant responses to light intensity for 70 traits ranging from molecules to whole plant performance. New Phytol. 2019; 223(3): 1073-1105. https://doi.org/10.1111/nph.15754.
Rodrigues J.D.; Jadoski Junior C.; Fagan E.B.; Ono E.O.; Soares L.H.; Dourado Neto D. Fisiologia da produção de Cana de Açúcar. Editora ANDREI, São Paulo, SP, Brasil. 2018.
Sage R.F.; Peixoto M.M.; Sage T.L. Photosysthesis in Sugarcane, In: Moore P.H.; Boths F.C, (Ed). Sugarcane: Physiology, Biochemistry and Functional Biology, 1st ed. New Jersey: John Wiley & Sons; 2014.
Schwerz F.; Medeiros S.L.P.; Elli E.F.; Eloy E.; Sgarbossa J.; Caron B.O. Plant growth, radiation use efficiency and yield of sugarcane cultivatein agroforestry systems: An alternative for threatened ecosystems. An Acad Bras Cienc. 2018; 90(4): 3265–3283.
Agência Nacional de Energia Elétrica (ANEEL). Resolução Normativa nº 482, de 17 de abril de 2012. Brasília: ANEEL; 2012.
Agência Nacional de Energia Elétrica (ANEEL). Resolução Normativa nº 687 de 2015. Brasília: ANEEL; 2015.
Agência Nacional de Energia Elétrica (ANEEL). Perguntas e Respostas sobre a aplicação da Resolução Normativa no 482/2012 – updated may 25, 2017. Brasília: ANEEL; 2017. Available in https://www.aneel.gov.br/documents/656827/15234696/FAQ+-V3_20170524/ab9ec474-7dfd-c98c-6753-267852784d86.
Centro de Referência para Energia Solar e Eólica (CRESESB). Potencial Solar - SunData v 3.0. Rio de Janeiro: CEPEL; 2020. Available in <http://www.cresesb.cepel.br/index.php?section=sundata>.
Instituto Pecege (PECEGE). Radar Sucroenergético: Custos de produção de cana-de-açúcar, açúcar, etanol e bio eletricidade na região centro-sul do Brasil: fechamento da safra 2019/2020, Relatório PECEGE Evento Expedição de Custos Cana, updated october, 2020. Available in <https://radarsucroenergetico.com/>.
Associação Brasileira de Energia Solar Fotovoltaica (ABSOLAR). Energia Solar Fotovoltaica: Panorama, oportunidades e desafios, Seminário Desafios da Energia no Brasil, Brasília, 2017. Available in .
Greener. Geração Distribuída. Estudo Estratégico: Mercado Fotovoltaico, 2º semestre 2020. 2021. Available in .
Centro de Comercialização de Energia Elétrica (CCEE). PLD Media Mensal. 2021. Available in <https://www.ccee.org.br/portal/faces/pages_publico/o-que-fazemos/como_ccee_atua/precos/preco_media_mensal?_adf.
ctrl-state=kms1i751d_1&_afrLoop=24486461544925#!%40%40%3F_afrLoop%3D24486461544925%26_adf.ctrlstate%3Dkms1i751d_5>.
Banco Central do Brasil (BACEN). Preços e taxas dos títulos IPCA, pré e pós-fixados. Tesouro Direto Tesouro IPCA 2045. 2021. Available in <https://www.tesourodireto.com.br/titulos/precos-e-taxas.htm>.
Banco Nacional de Desenvolvimento Econômico e Social (BNDES). FINEM Geração de Energia. 2021. Available in <https://www.bndes.gov.br/wps/portal/site/home/financiamento/produto/bndes-finem-energia>.
Willockx B.; Herteleer B.; Ronsijn B. Uitterhaegen B.; Cappelle J. A standardized classification and performance indicators of agrivoltaic systems. Conference: 37th European Photovoltaic Solar Energy Conference and Exhibition. 2020; 1-5. DOI:10.4229/EUPVSEC20202020-6CV.2.47.
Hassanpour E.; Id A.; Selker J. S. Remarkable agrivoltaic influence on soil moisture, micrometeorology, and water-use efficiency. PLoS ONE. 2018; 13(11): e0203256. https:// doi.org/10.1371/journal.pone.0203256.
Schwerz F. Interações dinâmicas no crescimento de tungue e cana-de-açúcar em sistemas agroflorestais. (Dissertation) - Universidade Federal de Santa Maria, Campus de Frederico Westphalen, RS, Brasil. 2017.
Schwerz F.; Elli E.F.; Behling A.; Schmidt D.; Caron B.; Sgarbossa J. Yield and qualitative traits of sugarcane cultivated in agroforestry systems: Toward sustainable production systems. Renew Agric Food Syst. 2017; 34(4): 280-292.
Caron B.O.; Elli E.F.; Behling A.; Eloy E.; Schmidt D.; Stolzle J. Growth of tree species and sugarcane production in agroforestry systems. An Acad Bras Cienc. 2018; 90(2): 2425–2436.
Elli E.F.; Caron B.O.; De Paula G.M.; Eloy E.; Schwerz F.; Schmidt D. Ecofisiologia da cana-de-açúcar no sub-bosque de canafístula em arranjos de sistema agroflorestal. Com Sci. 2016; 7(4): 464–472.
Pinto F.L.G.; Bernardes M.S.; Sparovek G. Feasibility of Cultivation of Sugarcane in Agroforestry Systems. Sci agric. 2019; 60(3): 489–493.
Associação Brasileira de Normas Técnicas (ABNT). ABNT NBR 16690:2019 Instalações Elétricas de arranjos Fotovoltaicos – Requisitos de Projeto. São Paulo: ABNT; 2019.
Conselho Nacional do Meio Ambiente (CONAMA). Resolução Nº 279 de 27 de junho de 2001. Available in <https://www.normasbrasil.com.br/norma/?id=96891>.
Secretaria de Estado do Meio Ambiente de São Paulo (SMA). Resolução nº74/2017 Available at <https://www.infraestruturameioambiente.sp.gov.br/legislacao/2017/08/resolucao-sma-74-2017/>.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Quaestum
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.