Use of digital media, innovation capabilities and results of soybean farmers in PR and MATOPIBA

Use of digital media, innovation capabilities and results of soybean farmers in PR and MATOPIBA

Authors

  • Anderson Nora Ribeiro USP/ESALQ
  • Caetano Haberli Junior

DOI:

https://doi.org/10.22167/2675-441X-20210584

Keywords:

soybean, digital media, innovation, capacities

Abstract

Brazil is one of the most relevant agriculture producers in the world, been a fundamental food supplier. The crop that stands out is soybean, in which the country is the first producer and exporter, with a higher level of yield and a production system based on locally developed science. Soybean cultivation uses intensive technology and innovation and under the light of digital transformation we have been through, is important to understand how soybean growers are using digital media at their private matters, its relation with the use at farms, as the influence of digital at capacities of innovation and at the generation of competitive advantages on agriculture business. 55 growers were interviewed using electronic and telephonic questionnaire, of two important soybean regions, the Center and North of Parana state and MATOPIBA region. The results were analysed using Factorial Analysis and Structural Equations, in order to confirm the hypotheses or constructs. The use of digital media in properties had a significative and positive influence on the capacity for innovation, as well as, on the absorption of innovation. Additionally, the capacity for innovation had also a positive effect on the generation of competitive advantages, but the influence of the absorption of innovation on competitive advantages has not been proven. It is important to improve and push the use of digital media for the agricultural sector and other studies will be necessary, to generate new information and accelerate the digital transformation of the field.

References

Aaker, D.A.; Kumar, V.; Day, G.S. 2004. Pesquisa de Marketing. 2ed. Atlas, São Paulo, SP, Brasil.

Associação Brasileira de Marketing Rural e Agronegócio (ABMRA). 2017. 7ª Pesquisa Hábitos do Produtor Rural. Disponível em: <http://www.webrural.com.br/bfd_download/7a-pesquisa-habitos-do-produtor-rural-2017-fonte-associacao-brasileira-de-marketing-rural/>. Acesso em: out. 17, 2020.

Associação Brasileira das Indústrias de Tecnologia em Nutrição Vegetal (ABISOLO). 2020. 6º Anuário Brasileiro das Indústrias de Tecnologia em Nutrição Vegetal 2020. Disponível em: <https://www.abisolo.com.br/anuario/>. Acesso em: ago. 03, 2020.

Companhia Nacional de Abastecimento (CONAB). 2020. Boletim da Safra de Grãos. Boletim de setembro de 2020. Disponível em: <https://www.conab.gov.br/info-agro/safras/graos/boletim-da-safra-de-graos>. Acesso em: out. 06, 2020.

Confederação da Agricultura e Pecuária do Brasil (CNA). 2020. Panorama do Agro. Disponível em:

cnabrasil.org.br/cna/panorama-do-agro#_ftn1>. Acesso em: out. 08, 2020.

Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA). 2018. Artigo: Ciência, o adubo da agricultura brasileira. Disponível em: <https://www.embrapa.br/busca-de-noticias/-/noticia/37402973/artigo-ciencia-o-adubo-daagricultura-brasileira>. Acesso em: out. 17, 2020.

Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA). 2020. Embrapa Soja, História da soja. Disponível em: <https://www.embrapa.br/soja/cultivos/soja1/historia>. Acesso em: out. 08, 2020.

Haberli Jr, C.; Spers, E.E. 2014. Segmentação de produtores rurais baseada em estilo de vida: uma aplicação no mercado de fertilizantes. Desafio Online, 1(2): 599.

Hair Jr., J.F.; Sarstedt, M.; Hopkins, L.; Kuppelwieser, V.G. 2014. Partial least squares structural equation modeling (PLS-SEM): An emerging tool in business research. Europian Business Review, 26(2). https://doi.org/10.1108/EBR-10-2013-0128.

Henseler, J; Ringle, C.M.; Sarstedt, M. 2014. A new criterion for assessing discriminant validity in variance-based structural equation modeling. J. Acad. Marketing Sci., 43(1): 115-135.

Instituto Brasileiro de Geografia e Estatística (IBGE). 2017. Censo Agropecuário 2017. Disponível em: <https://www.ibge.gov.br/estatisticas/economicas/agricultura-e-pecuaria/21814-2017-censo-agropecuario.html?=&t=oque-e>. Acesso em: out. 06, 2020.

Instituto Brasileiro de Geografia e Estatística (IBGE). 2020a. Levantamento Sistemático da Produção Agropecuária (LSPA). Relatório de Setembro de 2020. Disponível em: <https://www.ibge.gov.br/estatisticas/economicas/agricultura-e-pecuaria/9201-levantamento-sistematico-da-producao-agricola.html?=&t=o-que-e>. Acesso

em: out. 17, 2020.

Instituto Brasileiro de Geografia e Estatística (IBGE). 2020b. Sistema IBGE de Recuperação Automática (SIDRA). Relatório de Setembro de 2020. Disponível em: <https://sidra.ibge.gov.br/tabela/6588>. Acesso em: out. 17, 2020.

Kotler, P. 2017. Marketing 4.0 – Do Tradicional ao Digital. GMT Editores, Rio de Janeiro, RJ, Brasil.

Massachusetts Institute of Technology (MIT) Center for Digital Business & Capgemini Consulting. 2011. DIGITAL TRANSFORMATION: A Roadmap for Billion-Dollar Organizations. Disponível em: <https://www.capgemini. com/wp-content/uploads/2017/07/Digital_Transformation__A_Road-Map_for_Billion-Dollar_Organizations.pdf>. Acesso em: out. 02, 2020.

McKinsey & Company. 2020. A mente do Agricultor Brasileiro na Era Digital. Disponível em: <http://www.aeaprcuritiba.com.br/admin/arquivos/A%20mente%20do%20Agricultor%20Brasileiro%20na%20Era%20Digital%20[AGCO].pdf>. Acesso em: out. 09, 2020.

República da China Clima (CLIMATE-DATA.ORG). 2020. Disponível em: <https://pt.climate-data.org/asia/republica-da-china-190/> Acesso em: out. 17, 2020.

Ringle, C.M.; Wende, S.; Becker, J.M. 2015. “SmartPLS 3.” Boenningstedt: SmartPLS GmbH. Disponível em: <http://www.smartpls.com>. Acesso em: out. 09, 2020.

Ronzelli Júnior, P. 1996. Melhoramento Genético de Plantas. Graffice Editora Gráfica, Curitiba, PR, Brasil.

Sarstedt, M.; Ringle, C.M.; Smith, D.; Reams, R., Hair, J.F. 2014. Partial least squares structural equation modeling (PLS-SEM): a useful tool for family business researchers. J. Family Bus. Strategy, 5(1): 105–115.

United States Department of Agriculture (USDA). 2020a. World Agricultural Production. Circular Series WAP 10-20 October 2020. Disponível em: <https://apps.fas.usda.gov/psdonline/circulars/production.pdf>. Acesso em:

out. 07, 2020.

United States Department of Agriculture (USDA). 2020b. Export Sales Query System. Disponível em: <https://apps.fas.usda.gov/esrquery/>. Acesso em: out. 07, 2020.

Published

2021-12-21

How to Cite

Ribeiro, A. N., & Haberli Junior, C. (2021). Use of digital media, innovation capabilities and results of soybean farmers in PR and MATOPIBA: Use of digital media, innovation capabilities and results of soybean farmers in PR and MATOPIBA. Quaestum, 2, 1–14. https://doi.org/10.22167/2675-441X-20210584

Issue

Section

Article