Análise da evolução da pandemia de covid-19 em relação a indicadores macroeconômicos, demográficos e políticos
Analysis of the evolution of the COVID-19 pandemic in relation to macroeconomic, demographic and political indicators
DOI:
https://doi.org/10.22167/2675-441X-2024719Keywords:
coronavírus, “machine learning”, política pública, saúde públicaAbstract
This study assesses the impacts of wealth, development and policy conditions on the performance of 168 countries in relation to the number of confirmed COVID-19 cases and deaths per million population after 365 days of the first locally confirmed case. For this analysis, supervised and unsupervised machine learning techniques were used, clustering to support data exploration and principal component analysis for data exploration, and principal component analysis and multilevel modeling to confirm the relationships and patterns found. From the results it is possible to conclude that the pre-existing conditions of wealth, development and policies have a significant impact on the performance standards of the countries analyzed in relation to the pandemic.
References
CNN Brasil. 2020. OMS classifica novo coronavírus como pandemia. Disponível em: <https://www.cnnbrasil.com.br/saude/organizacao-mundial-da-saude-oms-classifica-novo-coronavirus-como-pandemia/>. Acesso em: 10 abr. 2024.
Pires, L.S.; Andrino, B.; Llaneras, K.; Grasso, D. 2021. O mapa do coronavírus: como aumentam os casos dia a dia no Brasil e no mundo. El País. Disponível em: <https://brasil.elpais.com/brasil/2020/03/12/ciencia/1584026924_318538.html>. Acesso em: 10 abr. 2024.
Jones, L.; Palumbo, D.; Brown, D. 2021. Coronavírus: 8 gráficos para entender como a pandemia de covid-19 afetou as maiores economias do mundo. BBC News. Disponível em: <https://www.bbc.com/portuguese/internacional-55835790>. Acesso em: 10 abr. 2024.
Maia, B. 2020. A importância do analytics na crise da covid-19. MIT Sloan Management Review Brasil. Disponível em: <https://mitsloanreview.com.br/post/a-importancia-do-analytics-na-crise-da-covid-19/>. Acesso em: 10 abr. 2024.
Cao, Q.; Heydari, B. 2022. Micro-level social structures and the success of covid-19 national policies. Nature Computational Science 2(9): 595-604. DOI: https://doi.org/10.1038/s43588-022-00314-0
Hartonen, T.; Jermy, B.; Sõnajalg, H.; Vartiainen, P.; Krebs, K.; Vabalas, A.; FinnGen; Estonian Biobank Research Team; Leino, T.; Nohynek, H.; Sivelä, J.; Mägi, R.; Daly, M.; Ollila, H.M.; Milani, L.; Perola, M.; Ripatti, S.; Ganna, A. 2023. Nationwide health, socio-economic and genetic predictors of covid-19 vaccination status in Finland. Nature Human Behaviour 7: 1069-1083. DOI: https://doi.org/10.1038/s41562-023-01591-z
Re’em, Y.; Stelson, E.A.; Davis, H.E.; McCorkell, L.; Wei, H.; Assaf, G.; Akrami, A. 2023. Factors associated with psychiatric outcomes and coping in long covid. Nature Mental Health 1(5): 361-372. DOI: https://doi.org/10.1038/s44220-023-00064-6
Rostila, M.; Cederström, A.; Wallace, M.; Aradhya, S.; Ahrne, M.; Juárez, S.P. 2023. Inequalities in covid-19 severe morbidity and mortality by country of birth in Sweden. Nature Communications 14(1): 4919. DOI: https://doi.org/10.1038/s41467-023-40568-4
Pires, L.N.; Carvalho, L.; Xavier, L.D.L. 2020. Covid-19 e desigualdade: a distribuição dos fatores de risco no Brasil. Experiment Findings 2020. http://dx.doi.org/10.13140/RG.2.2.27014.73282.
Spotswood, E.N.; Benjamin, M.; Stoneburner, L.; Wheeler, M.M.; Beller, E.E.; Balk, D.; McPhearson, T.; Kuo, M.; McDonald, R.I., 2021. Nature inequity and higher covid-19 case rates in less-green neighbourhoods in the United States. Nature Sustainability 4(12): 1092-1098. DOI: https://doi.org/10.1038/s41893-021-00781-9
Reme, B.A.; Gjesvik, J.; Magnusson, K. 2023. Predictors of the post-COVID condition following mild SARS-CoV-2 infection. Nature Communications 14: 5839. DOI: https://doi.org/10.1038/s41467-023-41541-x
Mathieu, E.; Ritchie, H.; Rodés-Guirao, L.; Appel, C.; Gavrilov, D.; Giattino, C.; Hasell, J.; Macdonald, B.; Dattani, S.; Beltekian, D.; Ortiz-Ospina, E.; Roser-M. 2020. Coronavirus Pandemic (covid-19). OurWorldInData. Disponível em: <https://ourworldindata.org/coronavirus>. Acesso em: 10 abr. 2024.
The World Bank. 2021. DataBank. Disponível em: <https://databank.worldbank.org/home.aspx>. Acesso em: 10 abr. 2024.
Microsoft. 2021. Componente: Clustering K-means. Disponível em: <https://docs.microsoft.com/pt-br/azure/machine-learning/algorithm-module-reference/k-means-clustering>. Acesso em: 10 abr. 2024.
Fávero, L.P.; Belfiore, P. 2017. Manual de análise de dados. Elsevier, Rio de Janeiro, RJ, Brasil.
Matos, D.A.S.; Rodrigues, E.C. 2019. Análise fatorial. Enap, Brasília, DF, Brasil.
Fávero, L.P. 2008. Time, firm and country effects on performance: an analysis under the perspective of hierarchical modeling with repeated measures. Brazilian Business Review 5: 163-180. DOI: https://doi.org/10.15728/bbr.2008.5.3.1
Fávero, L.P.; Hair Jr., J.F.; Souza, R.F.; Albergaria, M.; Brugni, T.V. 2021. Zero-inflated generalized linear mixed models: a better way to understand data relationships. Mathematics 9(10): 1-28. https://doi.org/10.3390/math9101100. DOI: https://doi.org/10.3390/math9101100
United Nations Conference on Trade and Development (UNCTAD). 2020. The Least Developed Countries Report 2020. Disponível em: <https://unctad.org/webflyer/least-developed-countries-report-2020>. Acesso em: 10 abr. 2024.
Ades, A.; Chua, H.B. 1997. Thy neighbor’s curse: regional instability and economic growth. Journal of Economic Growth 2(3): 279-304. DOI: https://doi.org/10.1023/A:1009782809329
Grechyna, D. 2017. Political instability: the neighbor vs. the partner effect. MPRA. Disponível em: <https://mpra.ub.uni-muenchen.de/79952/>. Acesso em 10 abr. 2024. DOI: https://doi.org/10.2139/ssrn.2991360
Malta, M.; Vettore, M.; Silva, C.; Silva, A. 2021. Political neglect of covid-19 and the public health consequences in Brazil: the high costs of science denial. EClinicalMedicine 35: 100878. https://doi.org/10.1016/j.eclinm.2021.100878. DOI: https://doi.org/10.1016/j.eclinm.2021.100878
Barberia, L.; Gómez, E. 2020. Political and institutional perils of Brazil’s covid-19 crisis. The Lancet. Disponível em: <https://www.thelancet.com/article/S0140-6736(20)31681-0/fulltext>. Acesso em: 10 abr. 2024.
Haseltine, W. 2021. What can we learn from Australia’s covid-19 response? Forbes. Disponível em: <https://www.forbes.com/sites/williamhaseltine/2021/03/24/what-can-we-learn-from-australias-covid-19-response/>. Acesso em: 10 abr. 2024.
Wingfield-Hayes, R. 2020. Coronavírus: com poucos testes e sem lockdown, qual o mistério por trás da baixa mortalidade no Japão. BBC News. Disponível em: <https://www.bbc.com/portuguese/internacional-53298998>. Acesso em: 10 abr. 2024.
Lima, L. 2020. Pandemia de covid-19: A polêmica estratégia do Japão de ‘conviver’ com o coronavírus. BBC News. Disponível em: <https://www.bbc.com/portuguese/internacional-54447391>. Acesso em: 03 mar. 2024.
Melo, C.; Cabral, S. 2020. Pandemias e comunicação: uma avaliação experimental. Revista de Administração Pública (54): 735–757. DOI: https://doi.org/10.1590/0034-761220200137
Sátiro, R.M.; Martins, J.V.; Sousa, M.M. 2021. The courts in the face of covid-19 crisis: an analysis of the measures adopted by the DOI: https://doi.org/10.36745/ijca.388
Brazilian Judicial System. International Journal for Court Administration 12(2): 10.
Farias, M.N.; Leite Junior, J.D. 2021. Vulnerabilidade social e covid-19: considerações com base na terapia ocupacional social. Cadernos Brasileiros de Terapia Ocupacional 29: e2099. DOI: https://doi.org/10.1590/2526-8910.ctoen2099
Kalache, A. 2008. O mundo envelhece: é imperativo criar um pacto de solidariedade social. Ciência & Saúde Coletiva 13(4): 1107-1111. https://doi.org/10.1590/S1413-81232008000400002. DOI: https://doi.org/10.1590/S1413-81232008000400002
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Quaestum
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.